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A General Approach for the Development of
Unsplit-Field Time-Domain Implementations of
Perfectly Matched Layers for FDTD Grid Truncation

Li Zhao and Andreas C. Cangellaris

Abstract—1t is shown that the anisotropic perfectly matched
medimm, proposed recently for the construction of reflectionless
absorbing boundaries for differential equation-based electromag-
netic simulations in unbounded domains, can be made equivalent
to the Chew-Weedon perfectly matched medium developed from
a modified Maxwell’s system with coordinate stretching. Conse-
quently, despite the apparently nonphysical coordinate stretching,
Chew-Weedon’s formulation, with an appropriate definition of
the involved electric and magnetic fields, is merely an alterna-
tive mathematical form of Maxwell’s system in an anisotropic
medium. Finally, a more convenient time-domain implementation
of the perfectly matched layer without splitting of the field
components is derived.

I. INTRODUCTION

VER the past two years, Berenger’s perfectly matched

layer (PML) for the reflectionless truncation of differ-
ential equation-based wave simulations [1] has become the
focus of extensive research [2]-{8]. This letter focuses on two
specific approaches to the development of a PML. The first one
was proposed by Chew and-Weedon [2] and is closely related
to the work by Rappaport [S]. The second one was proposed
by Sacks et al. [7] and is based on a properly constructed
anisotropic medium.

The approach proposed by Sacks et al. appears more atirac-
tive in view of the fact that there is no need for the Chew-
Weedon modification of the spatial derivatives operators via
coordinate stretching, and thus Maxwell’s equations maintain
their familiar physical form (except for the strange properties
of the anisotropic medium). However, as shown below, these
two approaches are mathematically identical, provided that
the electric and magnetic fields present in the Chew-Weedon
stretched-coordinate formulation are properly defined.

We prove this equivalence by introducing an alternative way
of establishing the reflectionless properties of the anisotropic
layer of Sacks et al. The advantage of this new formulation
is that it leads directly to a new way of implementing the
perfectly matched absorber in the time domain, without the
need for splitting of the field components. Numerical results
are used to demonstrate the validity and accuracy of this new
implementation.
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II. THE EQUIVALENCE OF THE TWO APPROACHES

With the assumption of a time dependence of the form e/*¢,
Maxwell’s equations in an anisotropic medium have the form

VXE=—jwi-H (1a)
VxH=jwé-E (1b)
V-(e-E)=0 (1o
V-(i-H)=0 (1d)

where [i and € are, respectively, the permeability and permit-
tivity tensors of the medium. Following [7], we choose

€ = e(diag{a, b, c}) = €[A] (2a)
= p(diag{a, b, c}) = plA] (2b)
where the elements of the diagonal matrix
[A] = diag{a, b, c} ®3)
are, in general, complex, dimensionless, constants.
Let us define the field quantities E and H as follows:
{E.,E,, E.\T = [G)"Y{E,, E,,E.}T (4a)
{(H,, Hy, H.)" =[G {Ha, Hy, .} (4b)
where 1" denotes matrix tranposition and
[G] = diag{gm,gyagz} &)

where g¢.,9y,9, are, in general, complex constants. Their
values will be defined later. Using the notation G and A to
denote the tensors with matrix representations [G] and [A],
respectively, Maxwell’s equations can be wtitten in terms of
the scaled fields B and H

Vx(G-E) = —jwpA -G -H (62)

Vx(G-H) = jweA -G -E (6b)
V-(A-G-E)y=0 (6¢)
V-(uA-G-H)=0. (6d)

Using the matrix representation of the curl operator
0 -0, Oy
Vx]=1 8. 0 -0, Q)
—0y 0, 0
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and choosing g¢., g, and g. such that

2 2 2
gz \ _ b g\ ¢ 9:\ _ @
ZZ ) = =] ==, =) == ®
9y a g b G c

it is a matter of straightforward matrix algebra to show that
Maxwell’s equations become

Va x E= —jwuH (9a)
Va x H = jwek (9b)
Va- (eE) =0 (9¢)
Va- (uH) =0 9d)
where
def , 1 1 .1

Va=X—=0, +y—=0, + 2——0,. 10)

Vhe T T T (

Clearly, using the notation

sx:\/ﬁ, sy:\/ﬁ, 5;:\/21—5 (11)

the system in (9) is mathematically equivalent to Chew-
Weedon’s stretched-coordinate formulation [2], provided that
the fields in Chew-Weedon’s formulation are scaled forms of
the physical fields, defined by (4). Finally, we notice that the
selection g, = v/be, gy = Vca, and g, = ab satifies (8);
hence, we have

9r = 8z Gy =8y gz = 8z (12)

III. THE REFLECTIONLESS INTERFACE

Clearly, the selection of the values of a,b,c (or, equiva-
lently, the values of 5., s, 5,) in order to effect a reflectionless
planar interface between a medium (e1[A4], p1[Aq]) and an-
other medium (e2[As], pa[Ag]) can be based on a mathematical
development identical to that of Chew and Weedon [2].
Therefore, the details of the development will not be presented
here. We only mention that one must be cautious with the
application of the boundary conditions at the interface between
the two media. These conditions should be for the tangential
components of the physical fields E, H. not the scaled fields

As shown in [2]. plane wave solutions of (9) are character-
ized by the dispersion relation

W pe = (ku/52)* + (ky/5y)% + (k2/5.)? (13)
which is satisfied by
k, = ks, sin @ cos ¢ (14a)
ky = ks, sinfsin ¢ (14b)
k. = ks_.cosf (14¢)

where k = w,/pe. Furthermore, the wave impedance, 7, is
not affected by the coordinate stretching and is given by the
familiar expression 7 = \/,u—/e

Let us consider the planar interface between two media.
We assume that the interface is parallel to the z-y plane in a
cartesian coordinate system. The fields in medium one satisfy
(9) with material properties e1[A1], #1[A1], and correspond-
ing stretching parameters s,1, sy1, ;1. The fields in medium

IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 6, NO. 5, MAY 1996

two satisfy (9) with material properties ez[Az], ua[A2], and
corresponding stretching parameters sga, sy2, 5,2. Following
the development in [2], it can be shown that the interface can
be rendered reflectionless for all frequencies and all angles of
incidence of a plane wave propagating, say, from medium one
to medium two, if

(152)
(15b)

€1 = €2, H1 = K2,

Sx1 = Sz2, Sy1 T Sy2.

Furthermore, in view of (14¢), attenuation of the transmitted
wave in medium two can be effected by proper selection
of s.o. Thus, a reflectionless (perfectly matched) medium is
constructed.

For example, consider the case where medium one is
homogeneous and isotropic. Then [A;] is the identity matrix,
and thus 5,7 = 5,1 = s,1 = 1. From (15), the interface will
be reflectionless if (14a) is satisfied and the elements of [As]
are such that s;» = s o = 1, This, in view of (11), results
in az = by and caae = 1 which, in turn, give s,o = as.
Selecting ay to be complex results in attenuation of the wave
as it propagates in the anisotropic, perfectly matched medium.

If we let ag = 14+ (0/jwe) (where we have set ¢; = €3 = e,

p1 = pe = p), Maxwell’s first curl equation inside the
anisotropic perfectly matched medium becomes
1/0F, OF .
= _ Y = —jwH, — g_HJc (16a)
w\ Oy 0z €
1/0F OF, o
— * - 2 = —jwH, - ~H 16b
u(@z c%v) Ity ey( )

(1+_L)1<3Ey - 8E*’) = —jwH,. (16¢)
jwe ) u\ Oz Oy

With regards to the time-dependent form of the above
equations, we observe that (16a) and (16b) have the standard
form for wave propagation in a lossy medium with magnetic
conductivity o* = o(u/¢). However, (16¢), the equation for
the component normal to the interface between the homoge-
neous medium and the perfectly matched, anisotropic absorber
requires special attention. Transforming (16¢) to the time
domain we obtain

1 (aEy(t) - OEI(t)>

7 Oz dy
_ _OH.(t) o [T[8E,(r) OE,(r)
=0 [ (PR e an

The integral on the right-hand side of (17) is simply the time
integration of the z component of V x E. It is interpreted
as a time-dependent source present only within the perfectly
matched, anisotropic absorber. The use of time-dependent
source terms for the time-dependent implementation of the
unsplit field formulation of Berenger’s perfectly matched layer
[6], has also been discussed by Veihl and Mittra [8]. Notice
that in the FDTD approximation of this equation, the value
of H, at time ¢ = (n 4+ 1/2)At is found from its value at
t = (n — 1/2)A¢, the value of the z component of V x E
calculated at ¢ = nAtf and the time integral of this term
calculated up to ¢t = nAt.
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From duality it is apparent that a system similar to (16)
is obtained from Maxwell’s curl equation for the magnetic
field. Thus, a time-dependent source term, involving the time

integral of the z component of V x H, appears in the

update equation for F, (the component of E normal to the
interface). Thus, for perfectly matched, anisotropic media
with one direction of attenuation, two time-dependent sources
appear in the time-dependent form of Maxwell’s equations.

From (9), it can be shown that the above result can be
extended to perfectly matched, anisotropic media with more
than one directions of attenuation.

IV. NUMERICAL VALIDATION

In order to validate numerically the derived time-dependent
source implementation of the anisotropic, perfectly matched
medium, a numerical experiment was attempted in two di-
mensions. A point source at the center of a 100 x 50-cell
domain, £}y, on the z-y plane was excited by a smooth
compact pulse. The polarization of choice was transverse
magnetic (TM); thus, the field components ‘H,, H,, E. were
involved. The domain of computation was terminated by either
Berenger’s PML backed by perfect electric conductors, or by
an anisotropic PML, effected using (9), also backed by perfect
electric conductors. The benchmark FDTD solution, with zero
truncation boundary reflections, was obtained by simulating
radiation by the aforementioned point source in a much larger
domain, Qf, centered at the point source discretized by a
finite-difference grid of same cell size as that for Q and with
truncation boundaries placed sufficiently far away to provide
for causal isolation for all points in {2y over the time interval
used for the comparisons.

The error due to numerical reflections caused by the pres-
ence of the conductor-backed PML’s was obtained by subtract-
ing at each time step the field at any grid point inside 2 from
the field at the corresponding point in 7, Fig. 1 compares the
global error energy (sum of the squares of the error at each grid
point in £2) versus time for the standard Berenger’s PML to
that for the proposed time-dependent source implementation
of the anisotropic PML. Two cases were considered. One with
a four-element PML and one with an eight-element PML. For
both cases, a quadratic variation in PML conductivities was
assumed, with maximum value chosen for theoretical reflection
coefficient of 10~ at normal incidence. Clearly, for the case
of the eight-clement PML, both methods are as effective in
keeping the reflection error close to its theoretically predicted
value. ' :

V. CONCLUSION

In conclusion, a mathematical formulation has been pre-
sented for an anisotropic, perfectly matched medium that can
be used for numerical grid truncation in both frequency- and
time-dependent wave simulations using FDTD techniques.
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Fig. 1. Global error energy within a 100 X 50-cell FDTDgrid with a pulsed

TM point source at its center. Grid truncation was effected using Berenger’s
split-field PML, as well as the proposed unsplit-field implementation of an
anisotropic PML. Both methods produce the same error for the case of
a four-layer PML. For the case of an eight-layer PML, Berenger’'s PML
(triangles) has lower error at earlier times; however, both methods converge
to the same global error at late times.

The proposed formulation helps prove the equivalence of
the Chew-Weedon stretched-coordinate formulation, modified
by appropriate field scaling, with the anisotropic perfectly
matched medium proposed first by Sacks et al. The proposed
formulation has the advantage that it can be implemented in
the time domain without any splitting of the fields.
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