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A General Approach for the Development of

Unsplit-Field Time-Domain Implementations of
Perfectly Matched Layers for FDTD ~Grid Truncation

Li Zhao and Andreas C. Cangellaris

Abstract-It is shown that the anisotropic perfectly matched
medium, proposed recently for the construction of reflectiontess

absorbing boundaries for ditTerentiat equation-based electromag-
netic simulations in unbounded domains, can be made equivalent

to the Chew-Weedon perfectly matched medium developed from
a modfied Maxwell’s system with coordinate stretching. Conse-
quently, despite the apparently nonphysical coordimte stretching,

Chew-Weedon’s formulation, with an appropriate definition of
the involved electric and magnetic fields, is merely an alterna-

tive mathematical form of Maxwell’s system in an anisotropic

medium. Finally, a more convenient time-domain implementation
of the perfectly matched layer without splitting of the field
components is derived.

I. INTRODUCTION

OVER the past two years, Berenger’s perfectly matched

layer (PML) for the reflectionless truncation of differ-

ential equation-based wave simulations [1] has become the

focus of extensive reseamh [2]–[8]. This letter focuses on, two

specific approaches to the development of a PML. The first one

was proposed by Chew and- Weedon [2] and is closely related

to the work by Rappaport [5]. The second one was proposed

by Sacks et al. [7] and is based on a properly constructed

anisotropic medium.

The approach proposed by Sacks et al. appears more attrac-

tive in view of the fact that there is no need for the Chew-

Weedon modification of the spatial derivatives operators via

coordinate stretching, and thus Maxwell’s equations maintain

their familiar physical form (except for the strange properties

of the anisotropic medium). However, as shown below, these

two approaches are mathematically identical, provided that

the electric and magnetic fields present in the Chew-Weedon

stretched-coordinate formulation are properly defined.

We prove this equivalence by introducing an alternative way

of establishing the reflectionless properties of the anisotropic

layer of Sacks et al. The advantage of this new formulation

is that it leads directly to a new way of implementing the

perfectly matched absorber in the time domain, witbout the

need for splitting of the field components. Numerical results

are used to demonstrate the validity and accuracy of this new

implementation.
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II. Tmz EQUIVALENCE OF mm Two APPROACHES

With the assumption c}f a time dependence of the form e~’”t,

Maxwell’s equations in an anisotropic me(dium have the form

\7x E=–jwP-H (la)

F’x H=jw:. E (lb)

V.(F. E)=O (lC)

V.(ji. H)=O (id)

where D and < are, respectively, the permeability and permit-

tivity tensors of the medium. Following [7], we choose

F = ~(cliag{a, b, c}) = c[A] (2a)

(2b)p = K(diag{a, b, c}) = w[A]

where the elements of the diagonal matrix

[Al = diag{a, b, c} (3)

are, in general, complex, dimensionless, constants,

Let us define the field quantities E and H as follows:

{&fiv,fiz}T = [G]-l{E.,ICV,E.}T (4a)

{~z, & fi,}~ = [G]-’{&, ~~w~.}~ (4b)

where T denotes

where g~, gy, g?

matrix transposition and

[G] = diag{g~,gg,g~j (5)

are, in general, complex constants. Their

values will be defined later. Using the ‘notation G and A to

denote the tensors with matrix representations [G] and [A],
respectively, Maxwell’s equations can be written in terms of

the scaled fields E ancl H

vx((2-E)=–ju#A” G”H (6a)

vx((%-H)=jw&( ;-E (6b)

v.(a. G. E)=o (6c)

v.(px. (2. H)=o. (6d)

Using the matrix representation of the curl operator

[Vx] =

[:: ‘:+! ‘7)
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and choosing gz, gY and g,, such that

it is a matter of straightforward matrix algebra to show that

Maxwell’s equations become

v. x E = –jwpii (9a)

v. x H = jwEE (9b)

v.. (6E)= o (9C)

v. (~H) = o (9d)

where

Clearly, using the notation

s.=v’z, Sy=v$i, S.=VZ (11)

the system in (9) is mathematically equivalent to Chew-

Weedon’s stretched-coordinate formulation [2], provided that

the fields in Chew-Weedon’s formulation are scaled forms of

the physical fields, defined by (4). Finally, we notice that the

selection g. = &, gw = @, and g. = v@ satifies (8);

hence, we have

9X = s.> gy = Sy g, =s..

III. THE REFLECTIONLESS INTERFACE

Clearly, the selection of the values of a, b, c (or,

(12)

equiva-
lently, the values of SZ, s ~, Sz ) in order to effect a reflectionless

planar interface between a medium (Cl [Al], pl [Al]) and an-

other medium (CZ[Az], p2 [A2] ) can be based on a mathematical

development identical to that of Chew and Weedon [2].

Therefore, the details of the development will not be presented

here. We only mention that one must be cautious with the

application of the boundary conditions at the interface between

the two media. These conditions should be for the tangential

components of the physical fields E, H. not the scaled fields

E, H.

As shown in [2], plane wave solutions of (9) are character-

ized by the dispersion relation

W2W = (~z/&)2 + (ky/sg)2 + (k:/s2)2 (13)

which is satisfied by

where k = w ~.

not affected by the

familiar expression

k= = ks. sin Q cos @ (14a)

Lv = t%su sin~sin~ (14b)

k,: = k%’= C(M 0 (14C)

Furthermore, the wave impedance, ~, is

coordinate stretching and is given by the

?j = \/jJz.

Let us consider the pl&ar interface between two media.

We assume that the interface is parallel to the z-y plane in a

cartesian coordinate system. The fields in medium one satisfy

(9) with material properties C1[Al], ~1 [Al], and correspond-
ing stretching parameters SZ1, SY1,Szl. The fields in medium

two satisfy (9) with material properties C2[AZ], LLZ[Az], and

corresponding stretching parameters s~z, SYZ,.9M. Following

the development in [2], it can be shown that the interface can

be rendered reflectionless for all frequencies and all angles of

incidence of a plane wave propagating, say, from medium one

to medium two. if

c1 = 62, ,f4’l=P2> (15a)

SZl = SZ2, Syl = SU2. (15b)

Furthermore, in view of (14c), attenuation of the transmitted

wave in medium two can be effected by proper selection

of SZ2. Thus, a reflectionless (perfectly matched) medium is

constructed.

For example, consider the case where medium one is

homogeneous and isotropic. Then [Al] is the identity matrix,

and thus SZ1 = SU1 = SZ1 = 1. From (15), the interface will
be reflectionless if (14a) is satisfied and the elements of [A2]

are such that SZ2 = SY2 = 1, This, in view of (1 1), results

in a2 = b2 and c2a2 = 1 which, in turn, give SZ2 = az.

Selecting a2 to be complex results in attenuation of the wave

as it propagates in the anisotropic, perfectly matched medium.

If we let a2 = 1 + (m/jwc) (where we have set El = e2 = c,

PI = LL2 = P), Maxwell’s first curl equation inside the
anisotropic perfectly matched medium becomes

With regards to the time-dependent form of the above

equations, we observe that (16a) and ( 16b) have the standard

form for wave propagation in a lossy medium with magnetic

conductivity ff* = o(~/c). However, ( 16c), the equation for

the component normal to the interface between the homoge-

neous medium and the perfectly matched, anisotropic absorber

requires special attention. Transforming (16c) to the time

domain we obtain

The integral on the right-hand side of [17) is simply the time

integration of the z component of V x E. It is interpreted

as a time-dependent source present only within the perfectly

matched, anisotropic absorber. The use of time-dependent

source terms for the time-dependent implementation of the

unsplit field formulation of Berenger’s perfectly matched layer

[6], has also been discussed by Veihl and Mittra [8]. Notice

that in the FDTD approximation of this equation, the value

of Hz at time t = (n + l/2)~t is found from its value at

t = (n – l/2) At, the value of the z component of V x E

calculated at t = nAt and the time integral of this term

calculated up to t = nAt.
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From duality it is apparent that a system similar to (16)

is obtained from Maxwell’s curl equation for the magnetic

field. Thus, a time-dependent source term, involving the time

integral of the z component of V x H, appears in the

update equation for EZ (the component of E normal to the

interface). Thus, for perfectly matched, anisotropic media

with one direction of attenuation, two time-dependent sources

appear in the time-dependent form of Maxwell’s equations.

From (9), it can be shown that the above result can be

extended to perfectly matched, anisotropic media with more

than one directions of attenuation.

IV. NUMERICAL VALIDATION

In order to validate numerically the derived time-dependent

source implementation of the anisotropic, perfectly matched

medium, a numerical experiment was attempted in two di-

mensions. A point source at the center of a 100 x 50-cell

domain, ~N, on the x-y plane was excited by a smooth

compact pulse. The polarization of choice was transverse

magnetic (TM); thus, the field components Hz, IIy, E. were

involved. The domain of computation was terminated by either

Berenger’s PML backed by perfect electric conductors, or by

an anisotropic PML, effected using (9), also backed by perfect

electric conductors. The benchmark FDTD solution, with zero

truncation boundary reflections, was obtained by simulating

radiation by the aforementioned point source in a much larger

domain, QL, centered at the point source discretized by a

finite-difference grid of same cell size as that for ON and with

truncation boundaries placed sufficiently far away to provide

for causzd isolation for all points in ~N over the time interval

used for the comparisons.

The error due to numerical reflections caused by the pres-

ence of the conductor-backed PML’s was obtained by subtract-

ing at each time step the field at any grid point inside ON from

the field at the corresponding point in of,. Fig. 1 compares the

global error energy (sum of the squares of the error at each grid

point in ~N) versus time for the standard Berenger’s PML to

that for the proposed time-dependent source implementation

of the anisotropic PML. Two cases were considered. One with

a four-element PML and one with an eight-element PML. For

both cases, a quadratic variation in PML conductivities was

assumed, with maximum value chosen for theoretical reflection

coefficient of 10–5 at normal incidence. Clearly, for the case

of the eight-element PML, both methods are as effective in

keeping the reflection error close to its theoretically predicted

value.

V. CONCLUSION

In conclusion, a mathematical formulation has been pre-

sented for an anisotropic, perfectly matched medium that can

be used for numerical grid truncation in both frequency- and

time-dependent wave simulations using FDTD techniques.

I

TimeStep

Fig. 1. Global error energy within a 100 x 50-cell FDTDgnd with a pulsed
TM point source at its center. Grid truncation was effected using Berenger’s
split-field PML, as well as the proposed unsplit-field implementation of an
anisotropic PML. Both methods produce the same error for the case of
a four-layer PML. For the czse of an eight-layer PML, Berenger’s PML
(triangles) has lower error at earlier times; however, both methods converge
to the same global error at late times.

The proposed formulation helps prove the equivalence of

the Chew- Weedon stretched-coordinate formulation, modified

by appropriate field scaling, with the anisotropic perfectly

matched medium proposed first by Sacks et al. The proposed

formulation has the advantage that it can be implemented in

the time domain without any splitting of the fields.
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